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A vector difference calculus is developed for physical models defined on a general triangulating graphG,
which may be a regular or an extremely irregular lattice, using discrete field quantities roughly analogous to
differential forms. The role of the spaceLp of p-forms at a point is taken on by the linear space generated at
a graph vertex by the geometricalp-simplices which contain it. The vector operations divergence, gradient, and
curl are developed using the boundary] and coboundaryd. Dot, cross, and scalar products are defined in such
a way that discrete analogs of the vector integral theorems, including theorems of Gauss-Ostrogradski, Stokes,
and Green, as well as most standard vector identities hold exactly, not as approximations to a continuum limit.
Physical conservation laws for the models become theorems satisfied by the discrete fields themselves. Three
discrete lattice models are constructed as examples, namely a discrete version of the Maxwell equations, the
Navier-Stokes equation for incompressible flow, and the Navier linearized model for a homogeneous, isotropic
elastic medium. Weight factors needed for obtaining quantitative agreement with continuum calculations are
derived for the special case of a regular triangular lattice. Green functions are developed using a generalized
Helmholtz decomposition of the fields.@S1063-651X~99!09801-3#

PACS number~s!: 02.70.2c, 02.40.Sf, 46.05.1b
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I. INTRODUCTION

This paper concerns discrete representation of continu
field quantities that appear, for example, in quantum m
chanics, continuum mechanics, electromagnetism, or tr
port theory. In particular, it presents an analog of vector d
ferential calculus, not an approximation to it, which ac
directly on the discrete models. Although the paper is
primarily about numerical methods, the numerical treatm
of continuum problems forms a convenient logical start
point, thus the first part of the Introduction is framed in th
context.

For computing field quantities one may choose to div
space into cells and make some finite difference@1,2# or
finite element approximation@3#. This replaces the partia
differential equations~PDEs! governing the fields by matrix
equations. Another way to accomplish this is to expand
fields in a basis of localized functions. Usually, the ma
point of the matrix equations is that their solutions sho
approximate, in some well-defined sense, the solutions of
original PDEs. However, sometimes what is called for is
simple lattice model that preserves qualitative features of
phenomenon, but which need not be an accurate nume
approximation to the original PDEs. This kind of model a
proximation is most useful if the qualitative properties of t
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solution to the original problem are not known in certa
limits, and if one has reason to suppose the solutions of
discrete model will behave similarly. It is particularly attra
tive when spatial boundary conditions are very complicat
as in the case for fluid motion inside the pore cavities o
porous material or quantum-mechanical transport in a gla
structure.

Lattice models of this type are used routinely for sca
fields obeying, e.g., the Schro¨dinger equation or diffusion
equation on spatially complex structures. Vector or ten
fields can be treated in similar fashion with indices accou
ing for field components. However, the resulting formalis
is more complicated. Boundary conditions mix the field co
ponents, and the mixing is worse when the equations
nonlinear and hence couple field components togethe
each point in space. The conceptual simplicity of matrix c
culations erodes as the number of indices increases. The
of deriving properties of the discrete models becomes m
and more daunting if at some point all the subscripts mus
unpacked and all the details taken into account. One pre
to keep as much conceptual simplicity as possible, e
when addressing a high level of detail. For continuum cal
lations, vector and tensor operations can often be perform
without explicit reference to individual components. The u
of differential forms@4,5#, for example, makes this particu
larly convenient. However, if the discrete models arise o
as approximations to the PDEs, one cannot do precise ca
lations on the lattice using tools developed for the co
tinuum.

ta
1217 ©1999 The American Physical Society
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The current paper presents a lattice formulation of vec
calculus with which one can rewrite systems of PDEs
physical phenomena as systems of difference equations
graph which serves as a quadrature grid. Some combinat
aspects of the theory of differential forms are adapted for
on the graph with little mention of metric properties for th
time being. The treatment is topological in the sense tha
derives from adjacency rather than detailed geometry,
algebraic or combinatorial rather than metric or meas
theoretic properties are of primary concern. Therefore,
arrives at lattice models for a physical phenomenon wh
like the Ising model, attempt to capture its qualitative fe
tures without including details that may or may not be i
portant but which detract from conceptual simplicity. It
possible to reintroduce the proper metric content by mean
quadrature weights. This results in numerical methods
lated to the popular finite difference@1,2# ~see Sec. VII!,
finite element@3#, or lattice gas methods@6#.

Scalar and vector fields are placed on equal footing,
that does not depend on space outside the graph itself. Ve
fields are defined with respect to an intrinsic local basis w
no reference to direction in the external space. This is no
since a vector field assigns a vector to each point in sp
and normally a vector is defined by its magnitude and dir
tion.

Calculations take place on the simplicial complex defin
by a graph. The graph is a triangulation, meaning tha
divides three-dimensional space into tetrahedral cells
3-simplices that can share triangular faces~2-simplices!,
edges~1-simplices!, or vertices~0-simplices!. Graph vertices
or lattice sites are points in the discrete space. The gr
with the set of all simplices is the simplicial complex. Th
homology theory of simplicial complexes@7–9# can be
thought of as a model approximation that forestalls confro
ing some of the subtleties of manifolds@10#. Here we adopt
a similar position toward the relation between discrete a
continuous physical models.

Continuum vector calculus makes use of a set of ba
vectors at each point. The basis vectors are in general di
ent at different points, such asr̂ and û of polar coordinates.
In the lattice development, the role of the set of basis vec
at a given point is taken on by the set of elementary g
metrical simplices, i.e., bonds, triangles, and tetrahedra
include a given site. For each value ofp from 0 to 3, the set
of all p-simplices on the graph is a basis for the real vec
space we shall call the space ofp-fields. Discretep-field
variables of four types are introduced, corresponding in
continuous case to differential 0-, 1-, 2-, and 3-form
Roughly speaking, the discrete analogs to spaceLp at a par-
ticular point in the theory of differential forms@5# are the
vector spaces generated by the set ofp-simplices containing
a particular graph vertex. As in the theory of different
forms, the field quantities of the discrete theory divide na
rally into types corresponding to scalar, vector, pseudov
tor, and pseudoscalar fields. The prefixpseudoimplies a
classification with respect to a graph parity operation to
discussed presently.

Think of the set$( i )% of 0-simplices, wherei indexes
graph vertices or lattice sites, as a geometrical basis se
representing scalar fields. This is similar to the convention
expanding scalar functions approximately in a set of loc
r
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ized basis functions. For our purposes, a 0-field or sc
field will be a vector

f5(
[ i ]

~ i !f i ~1!

in the space where the set of 0-simplices forms a basis.
variablef i is as usual the strength of the fieldf at point i ,
analogous to field strengthf(x) in continuous space. Like
wise, 1-, 2- and 3-fields are vectors,

a5(
[ i , j ]

~ i , j !a i j ,

b5 (
[ i , j ,k]

~ i , j ,k!b i jk , ~2!

g5 (
[ i , j ,k,l ]

~ i , j ,k,l !g i jkl ,

in the spaces where the oriented 1-, 2-, or 3-simplices,
spectively, form a basis. The oriented 1-simplex (i , j ) is a
basis vector oriented along the bond from vertexi to vertex
j . Likewise the ordered triple (i , j ,k) is a right-hand oriented
2-simplex, or triangle, containing verticesi , j , and k. One
can associate with it a basis vector normal to the triangle
the right-handed direction. Interchanging vertices mer
changes sign, so that ifP is a permutation,

„P~ i !,P~ j !,P~k!, . . . ,P~n!…5sgn~P! ~ i , j ,k, . . . ,n!,
~3!

where sgn(P) is 61 depending on whetherP is even or odd.
Field components such asa i j , b i jk , or g i jkl are therefore
antisymmetric with respect to index permutation. The su
mations include each simplex only once. Thus the squ
bracket @¯# denotes one representative of an equivale
class related by exchange of indices.

Renumbering the vertex set ofG is a formal symmetry
which cannot have physical consequences. Reversing
vertex ordering changes the sign ofp-simplices with oddp,
so it changes the sign of the components forp-fields with
p51 and 3. Thus by analogy with the parities of continuu
fields with respect to coordinate inversion, we classify t
basic p-field quantities as 0-fields~scalars!, 1-fields ~polar
vectors!, 2-fields ~axial vectors!, and 3-fields~pseudosca-
lars!. Evidently these discrete quantities bear some res
blance to the continuum fields, although simplified.

The theory is constructed in such a way that certain in
gral theorems, particularly the generalized Stokes theore
and many of the standard vector identities hold true exa
in the discrete case. Since it is a topological theory, indep
dent of deformations, the difference operators on arbitra
nonregular graphs need not correspond to particular diffe
tial operators in the external space. Of course for regu
triangulations~e.g., triangular lattice! one often finds such a
correspondence generated naturally by Taylor expansion

In any event, the discrete reformulation of the PDEs
any continuum model results in a discrete model that is
many ways much simpler and corresponds at least topol
cally to the original physics. Often the interesting pheno



or
c

se
se
ta
pr
io

c

ed
n
d

n

m

m
di
t

h
th
st
ur
i
f

de

rs
in

o
d

s
tr
s

-

sig
x
a

nd

ry

p

x-

c-

In

h
e
p-

y

f
-

PRE 59 1219VECTOR DIFFERENCE CALCULUS FOR PHYSICAL . . .
ena induced by constrained geometry are topological in
gin. In such cases the formalism provides finite differen
models that satisfy the proper integral constraints or con
vation rules exactly, not only in the continuum limit. The
conservation laws ensure the models must exhibit cer
qualitatively correct behaviors. In some cases, they also
vent what would otherwise be numerically unstable behav
of solution methods.

The current paper is organized in the following way. Se
tion II is a review of the properties of the boundary] and
coboundary d. The discrete analogs of the generaliz
Stokes theorems, including Stokes’ theorem, the diverge
theorem, and the fundamental theorem of calculus, are
rived in Sec. III from the duality between] and d. These
theorems motivate the definitions of divergence, gradie
and curl given in Sec. IV~see Fig. 1!. In Sec. V, the scalar
and vector products of combinations ofp-fields are defined
in such a way as to permit derivation of a reasonably co
plete set of vector identities forp-fields, each of which has a
precise continuum analog. Nonassociativity arising fro
nonlocality of products is discussed. Three examples of
crete lattice models are developed in Sec. VI. These are
lattice versions of Maxwell’s electrodynamic equations, t
Navier-Stokes equation for incompressible flow, and
Navier linearized model for a homogeneous, isotropic ela
medium. Section VII shows how to determine the quadrat
weights necessary for obtaining quantitative agreement w
the continuum calculations. These weights are evaluated
the special case of the triangular lattice. The Helmholtz
composition of a generalp-field is treated in some detail in
Sec. VIII in connection with the orthogonal pair of operato
]d andd]. Section IX is a summary discussion of the ma
results.

II. BOUNDARY AND COBOUNDARY

The vector difference models of interest are defined
the simplicial complex of graphG using the fields describe
above. Two verticesn andm appear in a 1-simplex (m,n) if
they are adjacent inG, which we denoten@m. Similarly,
( l ,m,n) or (k,l ,m,n) are 2- or 3-simplices if the vertice
involved are adjacent in pairs. The graph adjacency ma
H, with entryHmn51 if n@m and 0 otherwise, determine
the entire simplicial complex ofG.

The boundary@8# ]p is a linear map from the spaceCp of
p-simplices toCp21 . Its action on a simplex, which corre
sponds to taking the oriented boundary, is defined by

]0~n!50,

]1~m,n!5~n!2~m!,
~4!

]2~ l ,m,n!5~m,n!2~ l ,n!1~ l ,m!,

]3~k,l ,m,n!5~ l ,m,n!2~k,m,n!1~k,l ,n!2~k,l ,m!.

The rule is to drop each vertex successively and let the
6 depend on whether the position of the deleted verte
odd or even. The result in each case is an oriented bound
If ( m,n) is the directed bond fromm to n, its boundary is
the final minus the initial point, and if (l ,m,n) is an oriented
triangle, its boundary is the sequence of oriented bo
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( l ,m)1(m,n)1(n,l ). This is the usual, right-hand bounda
orientation. Note, however, that the boundary of (k,l ,m,n) is
oriented such that (l ,m,n) is positive outward, but (k,l ,m) is
oriented positive inward, i.e., toward vertexn. When the
rank p is clear from the context, the subscript of]p will be
suppressed and we speak loosely of the boundary ma].
Sometimes, however, it is best to keep careful track ofp.

The action of] on a field is found from linearity by dis-
tributing and letting it act on each basis simplex. For e
ample, ifb is the generic 2-field presented above,

]b5 (
[ l ,m,n]

b lmn]~ l ,m,n!

5 (
[ l ,m,n]

b lmn@~m,n!2~ l ,n!1~ l ,m!#, ~5!

where of course] means in this case]2 . Notice that the
boundary] is defined without explicit reference to the stru
ture ofG, i.e., without reference toH.

The coboundarydp is a linear map fromCp to Cp11 . It is
adjoint to]p in a certain sense to be discussed in Sec. III.
contrast to the case of]p , the definition of the coboundary
@8# dp refers toG explicitly. Applying dp to a p-simplex s
results in a sum of (p11)-simplices, the boundary of eac
of which contains1s. The sign is important. When th
context makesp unambiguous, the subscript can be su
pressed, and we speak of the coboundary mapd, a shorthand
notation similar to the use of] for boundary. When thep
subscripts are suppressed in an expression containing] or d,
the most general value ofp consistent with the rest of the
expression can be assumed. Thus let

d~k,l , . . . ,m!5 (
j @[k,l , . . . ,m]

~ j ,k,l , . . . ,m!, ~6!

where the sum is over verticesj adjacent to each vertex in
@k,l , . . . ,m#. Such vertices are characterized b
H jkH jl¯H jm51.

As with ], the action ofd on a field is induced by its
action on the simplex bases. Thus iff is a generic 0-field or
scalar, then

df5(
[n]

fnd~n!5(
[n]

fn (
m@n

~m,n!

5 (
[m,n]

~fn2fm!~m,n!. ~7!

If ( m,n) is a unit vector directed along the bond fromm to
n, the 1-fielddf is a difference gradient off.

The divergence of a 1-field is obtained with]. One has

]a5 (
[m,n]

amn]~m,n!5 (
[m,n]

amn@~n!2~m!#

5(
[n]

~n! (
m@n

amn . ~8!

The coefficient of (m) is minusthe difference divergence o
a at pointm, since it is the Kirchhoff sum of currents flow
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ing into the vertex m. Thus when f is a 0-field, df
5gradf, and whena is a 1-field, ]a52diva. Putting
these together gives the Laplacian operator for scalar fie
¹2f5div(gradf)52]df, or

2]df52(
n

~n! (
m@n

~fn2fm!5¹2f. ~9!

This intrinsic definition of the Laplacian for a discrete sca
field is identical to the one motivated physically by diffusio
in the following way @11#. First the gradient is defined in
relation to Fick’s law. Thus the flux of material diffusin
along a bond is assumed proportional to the differencefm
2fn in concentration between the two ends. Then Kirc
hoff’s current sum applied to vertexm defines divergence a
current out minus current in. The difference operator¹2 con-
structed for the diffusion equation can be transplanted to
other discrete scalar equation, such as the Schro¨dinger equa-
tion @12#. Therefore, even for an irregular graph on which t
discrete operators do not correspond by Taylor expansio
the continuum case, they can have topological meaning
that given by diffusion to the scalar Laplacian.

An essential property shared by] and d is that, when
applied twice to any fieldc, they annihilate it. In other
words, d2c50 and ]2c50 for any c, which means of
course that ifc is any p-field, ]p21]pc50 and dp11dpc
50. These equalities are obtained from direct computa
applied to a basis simplex. They are essential for the ana
to the continuum vector calculus since, as will develop
low, they force the curl of a gradient or the divergence o
curl to vanish.

To arrive at a difference¹2 for vector quantities, one
needs an intrinsic notion of curl. It is convenient to devel
this in relation to a generalized Stokes theorem, which is
subject of the following section.

III. STOKES THEOREMS

Definitions of other vector operators are motivated by
generalized Stokes theorems, which include Green’s th
rem, the Gauss-Ostrogradski divergence theorem,
Stokes’ theorem in three dimensions. Divergence and
are defined heuristically in the continuous case using
divergence theorem and Stokes’ theorem applied to a re
of diametere, in the limit e→0. Our approach is not to
approximate the continuous case, but to construct disc
analogs to the integral theorems. As a byproduct, these
duce to the usual integral theorems in the limit of sm
lattice spacing for sufficiently regular lattices. But the d
crete theorems hold exactly for anyG without regard to a
limit. The strategy is to use the discrete Stokes theorem
construct vector difference operators.

The discrete analog of an oriented arc or contour froma
to b is an ordered setC of edges~1-simplices! such that the
first vertex of the first edge isa, the second vertex of the las
edge isb, and the second vertex of each edge in betwee
the first vertex of the next edge. In other words, it is
oriented polygonal path. For simplicity, supposeC does not
intersect itself, so it forms a self-avoiding walk. Associat
with C is the 1-field or 1-chainC defined by the sum
s,
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C5 (
~m,n!PC

~m,n!. ~10!

The analog of a contour integral of the 1-fielda is

^a,C&5 (
~m,n!PC

amn , ~11!

where the left-hand side is the inner product, defined
^(k,l ),(m,n)&5dkmd ln2dknd lm , of a with C.

Now consider̂ df,C&, wheref is any scalar field,

^df,C&5 (
~m,n!PC

~fn2fm!5fb2fa . ~12!

Because of the definition ofC, the amplitudes cancel in pairs
except for the first and last. Since]C5(b)2(a), one sees
that

^df,C&5^f,]C&, ~13!

where the inner product̂f,c& of two 0-fields indicated on
the right-hand side is defined by^(m),(n)&5dmn .

The result^df,C&5^f,]C& is analogous to the funda
mental theorem of calculus, which is a special case of
generalized Stokes theorem^dc,V&5^c,]V&, whereV is a
p-chain expressing content~i.e., the oriented length, area, o
volume! of some portion ofG, andc is a (p21)-field. The
Stokes theorem is actually a special case of a more gen
adjoint relation@8# deriving from the definitions of] andd,
namely

^dl,m&5^l,]m&, ~14!

for any p-field l and (p11)-field m. To develop the Stokes
theorem based on this general relation we begin with
case wherec is a 1-field andV is a 2-chain representing a
oriented surface. The discrete analogS of an oriented surface
is a contiguous set of triangles sharing edges and oriente
that internal boundaries cancel. Of course,S need not be
planar. It could as well be any surface inG. The oriented area
is represented byS and the corresponding boundary by]S.
Therefore the surface is tiled with oriented triangular face
Define

S5 (
~ l ,m,n!PS

~ l ,m,n!. ~15!

One sees that]S corresponds to the usual oriented bounda
curve. Likewise if the outward oriented volume or 3-simpl
content of a regionV of G is

V5 (
~k,l ,m,n!PV

~k,l ,m,n! ~16!

with oriented boundary]V and b is any 2-field, one finds
^db,V&5^b,]V&, which is the divergence theorem. Thu
combining every case, we have the Stokes theorem

^dc,V&5^c,]V&. ~17!

The dual correspondence between points and volumes
between lines and planes plays a role quite similar to
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Hodge star duality in the theory of differential forms@5#. If G
is embedded in three dimensions, the cells or 3-simplices
associated pairwise by shared faces in the same way ver
are associated pairwise by the edges joining them. The
graph !G, the vertices of which are the 3-simplices ofG,
must be augmented by an external point to represent
region external toG, and even after augmentation!G does
not correspond to a triangulation. Although the duality b
tween] andd can often be visualized easily in terms of!G,
one should note that the simplices actually dealt with
always those ofG. We use this duality to generalize Stok
theorem somewhat further and arrive at a complete se
vector operators.

The divergence theorem derived above for 2-fields ma
use of the 3-simplex contentV of a regionV of G. But in
view of duality one could as well fillV with vertices and
consider the 1-simplex content

!V5 (
nPV

~n!. ~18!

Then the coboundary is

d!V5 (
nPV

(
m@n

~m,n!. ~19!

Since (m,n) points fromm to n, the coboundary is directe
inward rather than outward. Hence, ifa is a 1-field,

^]a,!V&5^a,d!V&. ~20!

This is the dual of the divergence theorem. Sinced!V is
oriented inward, one arrives once again at2]a5diva.

An oriented 1-chain content can be assigned likewise
surfaceS by counting the oriented bonds or 1-simplices th
pierceS. In this caseS may be thought of not as a subset
G but as a curved surface passing throughG in such a way as
to sever all bonds attachingV to the rest ofG. This is con-
sistent of course with our handling of the coboundaryd!V.
Hence let

!S5 (
~m,n!PS

~m,n!. ~21!

So S is the sum over all bonds piercingS in a sense chose
as positive. Thus,

d!S5 (
~m,n!PS

(
l@[m,n]

~ l ,m,n!, ~22!

so that the right-hand side of

^]b,!S&5^b,d!S& ~23!

receives unbalanced contributions only when the cu
boundingS passes through a triangle (l ,m,n). This result is
the dual Stokes theorem in three dimensions for 2-fields

In the same way, if!C is the 3-simplex content of a curv
C defined by a string of oriented tetrahedra through whicC
passes, andg is any 3-field, we have

^]g,!C&5^g,d!C&, ~24!
re
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which is dual to the fundamental theorem of calculus. Co
bining results, we have the dual Stokes theorem:

^]c,!V&5^c,d!V&. ~25!

IV. VECTOR OPERATORS

The relation̂ da,S&5^a,]S& identifiesda as curla when
a is a 1-field. There is a simple geometrical meaning. S
posea contains the 1-simplex (q,r ). The coboundaryda
containsd(q,r ) which is a sum over oriented triangles, th
normal vectors of which circulate about (q,r ) right-
handedly. The coefficient of (m,n,p) in da is anp1apm
1amn , which is the limiting form of the right-hand circula
tion of a around (m,n,p). The identityd2f50 for an arbi-
trary 0-fieldf corresponds to curl(gradf)50.

The identity ^db,V&5^b,]V& implies that db is divb
when b is a 2-field in the following way. First consider a
arbitrary 2-simplex (p,q,r ) in b. For simplicity suppose it is
in the interior ofG. The coboundaryd(p,q,r ) contains ex-
actly two oriented tetrahedra, (n1 ,p,q,r ) and (n2 ,p,q,r ).
Both appear with positive sign ind(p,q,r ), so one of them,
say (n1 ,p,q,r ), is oriented positive outward and the oth
(n2 ,p,q,r ) inward. Thus the coefficient indb of an arbitrary
3-simplex (n,p,q,r ) oriented outward isbpqr1b rqn1bnpr
1bqpn , which is the sum of the 2-vector currents outwa
Divergence is the limiting form of the net outward flux. Th
identity d2a50 for a a 1-field corresponds to div(curla)
50. From the dual Stokes theorem one finds also that2]g
is the gradient of the 3-fieldg and, from Stokes theorem, tha
]b is curlb for a 2-field.

The vector difference operators in terms of] and d are
summarized schematically in Fig. 1. From the vector iden
curl(curlAW )5grad(divAW )2¹2AW , we find that the Laplacian
for a either a 1- or a 2-field is

¹2a52~d]1]d!a. ~26!

The Laplacian for 3-fields, which are pseudoscalars, is¹2g
52d]g. In summary, the Laplacian operator for a gene
p-field is

¹252~d]1]d!. ~27!

We shall see in Sec. VIII that the two operators]d andd]
when acting on all ofG are each Hermitian with non

FIG. 1. Correspondence between differential operators
boundary and coboundary maps.
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negative eigenvalues, so that the eigenvalues of¹2 are non-
positive. Addition of the quadrature weights needed to m
the combinatorial framework into abona fide numerical
method, as discussed in Sec. VII, introduces positive c
stantsa andb so that¹252(ad]1b]d), which has all the
same qualitative properties.

V. VECTOR IDENTITIES

The program of this section is to construct vector diffe
ence identities as similar as possible to those of vector
culus. The way to do this is to make judicious choices
definitions of the various scalar, dot, and cross products
p-fields so as to force each identity, taking the identities
order of increasing complexity and the fields in order, ge
erally, of increasingp. In many cases alternative identitie
exist which provide an internal consistency check. In
end, for identities involving products of three or more field
it is impossible to match all the continuum identities, b
cause the nonlocality of thep-simplex basis makes thes
products behave differently. This is seen to be a neces
consequence of the discrete formulation.

Applying d and] equivalents of divergence, gradient, a
curl to properly chosen products leads directly to differen
analogs of the familiar identities of vector calculus. T
products are expressible in terms of either the field com
nents or products of basic simplices. The differential iden
ties of vector calculus are

¹W ~ f g!5 f ¹W g1g¹W f , ~28!

¹W •~ f AW !5 f ~¹W •AW !1AW •¹W f , ~29!

¹W 3~ f AW !5 f ~¹W 3AW !2AW 3¹W f , ~30!

¹W ~AW •BW !5~AW •¹W !BW 1~BW •¹W !AW

1AW 3~¹W 3BW !1BW 3~¹W 3AW !, ~31!

¹W •~AW 3BW !5BW •~¹W 3AW !2AW •~¹W 3BW !, ~32!

¹W 3~AW 3BW !5AW ~¹W •BW !2BW ~¹W •AW !

1~BW •¹W !AW 2~AW •¹W !BW . ~33!

Corresponding scalar and vector products, for both 1-
2-fields, are deduced systematically, starting from the dif
ential identities, by substituting the difference representa
for each term and using the correspondence between the
tor differential and difference operators. By isolating the
sidual terms in the difference expression, the definition
quired for each type of product is determined hierarchica

We denote 0-fields byf and c, 1-fields by a and s,
2-fields by b and d, and 3-fields byg and l. The natural
definition for scalar-scalar multiplication is

fc5(
[m]

fmcm~m!. ~34!

Applying the difference gradientd0 yields
e

n-

-
l-
r
of
n
-

e
,
-

ry

e

-
i-

d
r-
n
ec-
-
-
.

d0~fc!5 (
[m,n]

1

2
~fm1fn!~cn2cm!~m,n!

1 (
[m,n]

1

2
~cm1cn!~fn2fm!~m,n!. ~35!

Sinced0f5(@m,n#(fn2fm)(m,n), the form of the gradient
of fc prompts the definition of 0-field–1-field scalar mult
plication,

fa5 (
[m,n]

1

2
~fm1fn!amn~m,n!, ~36!

which reducesd0(fc) to

d0~fc!5f~d0c!1c~d0f!, ~37!

the 0-field equivalent of Eq.~28!. This example illustrates
the general approach.

The 1-field equivalent of the identity Eq.~29! is obtained
from applying2]1 to the definition Eq.~36!,

2]1~fa!52]1F (
[m,n]

1

2
~fm1fn!amn~m,n!G . ~38!

Carrying out the operation on the right-hand side yields

2]1~fa!5(
[m]

fmF (
n@m

amnG~m!

1(
[m]

F (
n@m

1

2
~fn2fm!amnG~m!. ~39!

Utilizing Eq. ~34! for scalar-scalar multiplication and defin
ing the dot product for 1-fields as

a•s5(
[m]

1

2 F (
n@m

amnsmnG~m! ~40!

reduces2]1(fa) to

2]1~fa!5f~2]1a!1a•d0f. ~41!

This is the 1-field equivalent of the vector identity Eq.~29!.
The dot product defined in Eq.~40! has the necessary sym
metry and linearity, together with the property thata•a50
if and only if a50.

Applying d1 to fa results in
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d1~fa!5 (
[ l ,m,n]

1

3
~f l1fm1fn!~amn2a ln1a lm!~ l ,m,n!

1 (
[ l ,m,n]

1

6
$@~fn2f l !1~fm2f l !#amn2@~f l2fm!1~fn2fm!#a ln

1@~f l2fn!1~fm2fn!#a lm%~ l ,m,n!. ~42!

The first sum suggests taking the definition of 0-field–2-field scalar multiplication as

fb5 (
[ l ,m,n]

1

3
~f l1fm1fn!b lmn~ l ,m,n!, ~43!

which continues the pattern in Eqs.~34! and ~36! of spreading the scalar amplitude out equally over the vector compon
Reorganizing the second sum on the right-hand side of Eq.~42! and comparing to Eq.~30! implies that the equivalent vecto
product for 1-fields must be

a3s5 (
[ l ,m,n]

1

6
@~a ln1a lm!smn2~aml1amn!s ln1~anl1anm!s lm#~ l ,m,n!. ~44!

Then usingd1a andd0f simplifies Eq.~42! for d1(fa) to

d1~fa!5f~d1a!2a3d0f, ~45!

a form equivalent to that of the identity Eq.~30!. The cross product Eq.~44! of two 1-fields is antisymmetric and gives
2-field, as required by parity.

Applying d2 and]2 separately to definition Eq.~43! for fb induces difference identities equivalent to Eqs.~29! and ~30!
for 2-fields. Thusd2 acting onfb yields

d2~fb!5 (
[k,l ,m,n]

1

4
~fk1f l1fm1fn!~b lmn2bkmn1bkln2bklm!~k,l ,m,n!1 (

[k,l ,m,n]

1

12
@~f l1fm1fn23fk!b lmn

2~fk1fm1fn23f l !bkmn1~fk1f l1fn23fm!bkln2~fk1f l1fm23fn!bklm#~k,l ,m,n!. ~46!

Using the component expressions ford2b andd0f and defining 0-field–3-field scalar multiplication so as to spread the sc
amplitudes out equally over the pseudoscalar tetrahedra,

fg5 (
[k,l ,m,n]

1

4
~fk1f l1fm1fn!gklmn~k,l ,m,n!, ~47!

suggests defining the 1-field–2-field dot product as

a•b5 (
[k,l ,m,n]

1

12
@~akl1akm1akn!b lmn2~a lk1a lm1a ln!bkmn1~amk1aml1amn!bkln

2~ank1anl1anm!bklm#~k,l ,m,n!, ~48!
ich
nt
which reducesd2(fb) to

d2~fb!5f~d2b!1b•d0f. ~49!

The latter is the 2-field equivalent of vector identity Eq.~29!.
Thus the dot product of a 1- and a 2-field is a 3-field, wh
is consistent with the fact that a continuum vector dotted i
a pseudovector gives a pseudoscalar.

Similarly, applying]2 to fb gives
o

]2~fb!5 (
[m,n]

1

2
~fm1fn!F (

l@~m,n!
b lmnG~m,n!

1 (
[m,n]

1

6 F (
l@~m,n!

~2f l2fm2fn!b lmnG~m,n!.

~50!

Then recognizing]2b, d0f, andfa and defining

a3b5 (
[m,n]

1

6 F (
l@~m,n!

~aml1anl!b lmnG~m,n!, ~51!
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one arrives at

]2~fb!5f~]2b!2b3d0f, ~52!

which is equivalent to Eq.~30!.
From the formulas ford1a, a3s, anda•b, it is easily

seen that

d2~a3s!5s•d1a2a•d1s, ~53!

a 1-field–1-field difference equivalent to Eq.~32! for the
divergence of a cross product.

Finally, to obtain a discrete form of (vW •¹W )uW , which ap-
pears in the convective derivativeD/Dt5]/]t1vW •¹W of a
vector, for example, it is convenient to begin by adding d
ferential identities Eqs.~31! and ~33!. This gives

¹W ~AW •BW !1¹W 3~AW 3BW !

52~BW •¹W !AW 1AW 3~¹W 3BW !1BW 3~¹W 3AW !

1AW ~¹W •BW !2BW ~¹W •AW !. ~54!

Each term has a difference equivalent already determin
except (BW •¹W )AW . Thus, the equivalent difference form is

~s•¹W !a5
1

2
@]2~a3s!1d0~a•s!2a3d1s

2s3d1a1a~]1s!2s~]1a!#. ~55!

A special case of interest isv•(¹W v)5(1/2)d(v•v)2v
3(dv), which appears in the Navier-Stokes equation for
velocity 1-field v. If an explicit formula for components is
required, substitute the component expansion for each t
and simplify the summations using the adjacency matrixH.
This gives

1

4 (
[m,n]

(
l

H Hlm@smnaml2sml~amn1aml!#

1Hln@smnanl2snl~amn2anl!#

1
1

3
HlmHln@sml~2aml2anl!1snl~aml22anl!

22smn~aml1anl!#J ~m,n!, ~56!

where the summation overl can extend over all 0-simplice
since the adjacency matrixH vanishes for nonadjacent inde
pairs.

The rules equivalent to scalar multiplication, scalar pro
ucts, and vector products introduced above can be gene
in an alternative way by defining the corresponding produ
of basis simplices. This is simplified by introducing the inn
products. Note, however, that each of the following formu
assumes that the ordered sets of indices listed do indeed
resent simplices ofG. Otherwise the inner product should b
zero. To guarantee this, each orderedp-tuple can be multi-
plied by appropriate entries of the adjacency matrixH. Thus,
(k,l ,m) can be replaced byHklHlmHmk(k,l ,m) to ensure it
-

d,

e

rm

-
ted
ts
r
s
ep-

does represent a simplex. The formulas as listed handle
sign changes due to vertex order, unless otherwise no
Thus

^~m!,~n!&5dmn , ~57!

^~k,l !,~m,n!&5detFdkm dkn

d lm d ln
G , ~58!

or in general

^~k, . . . ,l !,~m, . . . ,n!&5detF dkm ¯ dkn

] � ]

d lm ¯ d ln

G . ~59!

The equivalent of scalar multiplicationfc5(@m#fmcm(m)
can be rewritten, using the simplex basis set of the fields
the inner product rule, as

^~ l !~m!,~n!&5d lndmn5^~ l !,~n!&^~m!,~n!&. ~60!

Thus, withf5(@ l #f l( l ) andc5(@m#cm(m),

^fc,~n!&5(
[ l ]

(
[m]

f lcm^~ l !~m!,~n!&

5(
[ l ]

(
[m]

f lcmd lndmn5fncn , ~61!

similarly the productfa can be rewritten in terms of the
simplex basis sets and inner product as

^~ j !~k,l !,~m,n!&5
1

2
~d jk1d j l !~dkmd ln2dknd lm!

5
1

2
@^~ j !,~k!&1^~ j !,~ l !&#^~k,l !,~m,n!&.

~62!

So, withf5(@ j #f j ( j ) anda5(@k,l #akl(k,l ),

^fa,~m,n!&5(
[ j ]

(
[k,l ]

f jakl^~ j !~k,l !,~m,n!&. ~63!

Substituting for the inner product and assuming, for purpo
of summation, that the pair (m,n) represents a properly or
dered simplex,

^fa,~m,n!&5
1

2
~fm1fn!amn . ~64!

The productsfb and fg rewritten in terms of simplex
basis and inner product are
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^~h!~ i , j ,k!,~ l ,m,n!&5
1

3
@^~h!,~ i !&1^~h!,~ j !&1^~h!,~k!&#^~ i , j ,k!,~ l ,m,n!&, ~65!

^~ f !~g,h,i , j !,~k,l ,m,n!&5
1

4
@^~ f !,~g!&1^~ f !,~h!&1^~ f !,~ i !&1^~ f !,~ j !&#^~g,h,i , j !,~kl,m,n!&. ~66!

By applying the same treatment to the scalar and vector products, respectively, one obtains

^~ j ,k!•~ l ,m!,~n!&5
1

2
@^~ j !,~n!&1^~k!,~n!&#^~ j ,k!,~ l ,m!&, ~67!

^~h,i !3~ j ,k!,~ l ,m,n!&5
1

6
$@^~h!,~ j !&1^~ i !,~ j !&#^~h,i ,k!,~ l ,m,n!&

2@^~h!,~k!&1^~ i !,~k!&#^~h,i , j !,~ l ,m,n!&%, ~68!

^~ f ,g!•~h,i , j !,~k,l ,m,n!&5
1

12
$@^~g!,~h!&1^~g!,~ i !&1^~g!,~ j !&#^~ f ,h,i , j !,~k,l ,m,n!&2@^~ f !,~h!&1^~ f !,~ i !&

1^~ f !,~ j !&#^~g,h,i , j !,~k,l ,m,n!&%, ~69!

^~h,i !3~ j ,k,l !,~m,n!&5
1

6
$@^~h,i !,~ l , j !&2^~h,i !,~ j ,k!&#^~k,l !,~m,n!&1@^~h,i !,~ j ,k!&2^~h,i !,~k,l !&#^~ l , j !,~m,n!&

1@^~h,i !,~k,l !&2^~h,i !,~ l , j !&#^~ j ,k!,~m,n!&%. ~70!
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The geometrical meaning of the dot and cross product
1- and 2-fields is interesting. Equation~67! shows that the
dot product of 1-simplices is purely local, in tha
( j ,k)•( l ,m) is zero unless the two bonds coincide, and
they do the result is61 depending on relative sense.

The cross product of two 1-fields generated by Eq.~68! is
slightly less local, since (h,i )3( l ,m) is nonzero wheneve
the two bonds form two sides of a triangle. If the orientati
of the two directed bonds is head to tail, then the result is
completed 2-simplex oriented consistently with the bond
rections, or in other words the two bonds form part of t
oriented boundary of the 2-simplex. On the other hand, if
two 1-simplices meet head to head or join tail to tail, then
right-hand rule applies. One can always reduce a nonz
product to a standard case by permuting indices and kee
track of the sign. The nonlocality of the product is manife
in the involvement in the product of an extra bond, the th
leg of the 2-simplex triangle in the product.

As seen in Eq.~69!, the dot product of a 1-field with a
2-field is a 3-field. This is necessary since the contraction
a vector with a pseudovector must yield a pseudoscalar
the continuum formulation this is so because of parity w
respect to space inversion. In the discrete calculus it is
quired due to parity with respect to reversal of the ver
collating sequence. Nonlocality results again from the int
duction of bonds for completion of the 3-simplex. When t
1-simplex (f ,g) does not intersect (h,i , j ) the product is
zero. The product is also zero if the bond (f ,g) lies com-
pletely on the boundary of (h,i , j ), which is the discrete
analog of orthogonality between 1- and 2-fields. Otherw
the product is1( f ,h,i , j ) if the bond intersects the triangl
at g5h, thus making an oriented polygonal path fromf to h
to i to j . Other cases can be computed by permuting
of
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e
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,

e

indices and keeping track of the sign. Similarly, Eq.~70!
shows that the cross product of a 1-field with a 2-field giv
a 1-field, as again is required by consideration of parity.

As mentioned above, a product of three or more fie
quantities is generally not analogous to the continuum co
terpart. This arises due to nonlocality of multiplication. Th
the cyclical invariance of the scalar triple product,AW •(BW

3CW ), does not hold, nor does the identityAW 3(BW 3CW )
5BW (AW •CW )2CW (AW •BW ). For example, consider the triple prod
uct P5(1,2)•@(2.3)3(3,4)#, where~1,2,3,4! is an oriented
3-simplex. The value of the triple product is well define
using the rules derived above, and it is the simplex~1,2,3,4!
itself. However, if the multiplicands are permuted in cyc
order, one has, for example, (2,3)•@(3,4)3(1,2)#, and this
product is strictly zero, since the bonds~3,4! and ~1,2! are
disjoint, representing skew edges of the tetrahedron. T
failure is due to nonlocality of the products. In continuo
space one can translate vectors at different points, by me
of a connection recipe, and compare them at the same p
In the discrete case the tangent spaces at adjacent p
overlap but not completely. This difference stemming fro
nonlocality is characteristic of a discrete formulation and
unavoidable in vector identities containing three or mo
vectors. This has to be taken into account when using
vector difference formalism, although at this point it does n
appear to be a very serious drawback.

We note that the scalar, dot, and cross products ofp-fields
defined above must relate to the cap and cup product
simplicial homology theory.@8# The vector identities could
be induced by representing the continuous fields as diffe
tial forms @5# and then comparing the Leibnitz rule for ext
rior differentiation of the wedge product of differential form
to the boundary formula for the cup product, as reflected
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Eqs.~41! and ~52!, and the coboundary formula for the ca
product, as in Eqs.~37!, ~45!, ~41!, and ~53!. However, the
route we have chosen seems to us more natural and b
motivated.

Thus we have been able to construct identities involv
0-, 1-, and 2-fields that are exact analogs for most of
corresponding differential identities of vector calculus. In t
next section, we illustrate how to use them to constr
physical models.

VI. PHYSICAL MODELS ON LATTICES

As examples of physical lattice models, we construct d
ference forms of the Maxwell electromagnetic theory, t
Navier-Stokes equation for solenoidal~i.e., incompressible!
flow, and the Navier linearized equation of motion for
isotropic elastic medium. The first example is developed
more detail to show application of the difference calculus
deriving model properties. Similar manipulations can
made for the other two models to obtain energy transp
expressions. The main point of each example is to illustr
the use of the formalism for constructing a lattice model.

A. Lattice electromagnetism

As a first example we develop a discrete Maxwell ele
tromagnetic theory on a general graph. Though austere
formulation shares interesting properties with the famil
PDEs of electromagnetism.

One can see the bonds ofG as conducting wires. Thus w
choose charger to be a 0-field on vertices acting as capa
tors, and currentJ to be a 1-field associated with bonds a
ing as wires. Let timet remain continuous, so that charg
conservation results in an equation of continuity

2]J1 ṙ50, ~71!

where the dot indicates time derivatived/dt. The Maxwell
difference equations become

]E52r, ~72!

dB50, ~73!

dE1Ḃ50, ~74!

]B2Ė5J. ~75!

Evidently in this formulation the electric fieldE is a 1-field
and the magnetic fieldB is a 2-field.

One cannot conclude thatdB50 implies B5dA. For
generalG, B5dA1G, whereG has a vanishing coboundary
so thatB consists of a curl and a globally circulating partG
with a vanishing local curl. This corresponds roughly to aB
field forming closed loops within the space such that fi
lines thread around a handle. Thus, for example,G could be
the space inside a toroidal solenoid. If we exclude this p
sibility, so that B5dA, then d(E1Ȧ)50 showsE52Ȧ
2df1L, whereL with vanishing coboundary also repre
sents a kind of global circulation. In other words,L is a
static electric field contribution with closed loops. It is not
static solution of Maxwell’s PDEs and would correspond to
tter
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time varying magnetic flux in space outside the gra
through a handle ofG. If we exclude this possibility as well
E52Ȧ2df. We refer to the dropping ofG andL as Helm-
holtz conditions. The topic of fields such asG andL will be
taken up in detail in the following section.

One finds wave equations forE andB from the Maxwell
equations:

2~d]1]d!E2Ë5 J̇1dr, ~76!

2~d]1]d!B2B̈5dJ. ~77!

These correspond to the usual wave equations with so
terms. It is important to bear in mind, however, that they a
not approximations to continuum wave equations but foll
rigorously from the discrete model.

With Helmholtz conditions one can derive coupled wa
equations for the gauge potentials (f,A). With the Lorentz
condition ḟ2]A50 these decouple to give

2~d]1]d!f2f̈52r, ~78!

and

2~d]1]d!A2Ä52J. ~79!

One obtains a discrete version of the Poynting theor
from the lattice field equations using the vector identit
proven in the preceding section. Transfer from the field
charged matter isE•J. Eliminating J using the inhomoge-
neous equation]B5J1Ė gives

J•E5E•]B2E•Ė. ~80!

In view of the vector identity for the boundary of a cro
product of a 1-fieldE and a 2-fieldB,

2]~E3B!5B•dE2E•]B, ~81!

one has

J•E5B•dE1]~E3B!2E•Ė. ~82!

Then using the lattice Maxwell equation for coboundary ofE
yields the discrete Poynting theorem

J•E5]S2U̇, ~83!

whereS is the Poynting vector 1-field

S5E3B ~84!

andU is the field energy

U5
1

2
~E•E1B•B!. ~85!

Interpretation ofS as electromagnetic energy flux, and i
deed ofU as field energy in the model, would at first see
more difficult than for continuum fields because of multip
connectedness. But this is not the case. Consider an arbit
simply connected!V in G. One has
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^]S,!V&5^S,d!V&5^J•E,!V&1
d

dt
^U,!V&. ~86!

Because the coboundary of!V is oriented inward, one would
like to conclude, topological subtleties not withstanding, t
the inward Poynting flux̂S,d!V& equals the rate of energ
transfer out of the field to the charged matter in!V, plus the
rate of increase of the integral ofU within !V. When !V
includes all vertices inG, then there is no coboundary and th
two volume integrals cancel. This helps identifyU with the
field energy. Thus for an arbitrary!V one arrives at the usua
interpretation of the surface integral ofS as electromagnetic
energy flux. So in general one may surmise that for a
orientable surface, not necessarily closed, the electrom
netic energy flux is given by a similar surface integral. T
difficulty in making this identification rigorously, just as i
the continuum case, is that the Poynting theorem only gi
the energy flux modulo quantities that always integrate
zero over any closed surface, i.e., over anyd!V.

The discrete Poynting theorem is a good example o
conservation theorem that holds exactly for the discr
model, not just as an approximation to the continuum res
It can be used to implement computational strategies or
rive further results. It is a constraint that will be satisfi
exactly.

Electromagnetic theory really requires all three spatial
mensions. For fluid motion or some electrostatics proble
two dimensions is sufficient, so that the regular triangu
lattice can be used. Unfortunately there is no regular tri
gulation of three-dimensional space. However, any trian
lation will suffice. One can use a triangulation based o
subdivision of the NaCl lattice structure. Thus lattice poin
are of two inequivalent types occupying interpenetrating
lattices. Bonds connect type 1 sites to each nearest type
type 2 site, and type 2 sites to each neighboring type 1
only. The triangulation then consists of two types of tetra
dra, one regular and one rectangular, and the lattice
sembles the face centered hypercubic one used for lattice
simulations@6#.

Consider any cluster subset of the lattice, perhaps a c
or perhaps a percolation cluster. Suppose the boundary o
cluster is a perfect conductor and inside is hollow, and t
one needs to know the electromagnetic modes inside.
the clusterV, its conducting boundaryb5]V, and its hollow
interior a.

On the conductorJb and rb adjust to keepEb50 and
Ḃb50. The 1- and 2-fieldsEb andḂb are analogs ofEW i and
]B' /]t. In the cavity,Ja50 and ra50. Thus for normal
modes one has

@]d#aaEa5v2Ea ~87!

and

@d]#aaEa50, ~88!

where the subscripts indicate that the matrices are first c
puted for the whole cluster and then projected ontoa. The
second equation ensures that no charge density appears
cavity. With Ea one can compute both the magnetic fieldBa
and the surface charge and current densitiesrb andJb , etc.
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B. Incompressible Navier-Stokes equations

The point of this subsection is to construct a nonline
lattice model representing the flow of an incompressi
fluid. The model should exhibit physical behavior includin
turbulence.

For incompressible flow, the Navier-Stokes equation
the velocity field is

r
]vW
]t

1rvW •¹W vW 52¹W p1m¹2vW , ~89!

wherer is the fluid density andm is the viscosity, with the
constraint that¹W •vW 50. Transcription of the nonlinear, iner
tial term into the lattice formulation is accomplished usi
the vector identity v•¹W v5 1

2 d(v•v)2v3(dv), derived
above for a 1-field, to obtain

r v̇1
r

2
d~v•v !2rv3~dv !52dp2m]dv, ~90!

with the constraint

]v50 ~91!

expressing incompressibility. It is not convenient to integr
the lattice model forward in time as it stands, since the pr
sure is not known initially and because nonzero diverge
introduced from any source is amplified in solving the equ
tions and tends to diverge. To overcome this problem, a v
tor potentialc ~corresponding to the stream function! may be
introduced so thatv5]c. In this way, Eq.~91! is satisfied
identically on the lattice. The stream functionc is a 2-field.
Since c is expanded in a basis of 2-simplices, the cor
sponding velocity 1-field consists of a sum of loop curren
and hence has zero Kirchhoff divergence automatically
each point. In other words, the computation takes place
strictly divergence-free subspace ofC1 .

It is also convenient to introduce the 2-fieldv5dv cor-
responding to the curl of the velocity, thus defining the vo
ticity. Applying the coboundary map to Eq.~90! and taking
the constancy ofr into account, it follows that

rdv̇2rd@v3~dv !#52md]dv, ~92!

i.e.,

rv̇2rd~]c3v!52md]v, ~93!

augmented by the equation expressingv as the Laplacian of
the stream function

v5d]c. ~94!

The solution of an incompressible flow problem on the l
tice implies the solution of the coupled systems of Eqs.~93!
and ~94! for v and c analogous to the continuous formula
tion @13#. As in Sec. VI A above for the difference Maxwe
equations, integral conservation theorems can be obta
readily from the discrete formulation of the field equation
For example, consider the case of an inviscid~Eulerian! flow
for which m50. In this case the vorticity equation simplifie
to v̇5d(]c3v). By taking the coboundary it follows tha
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dv̇50. Therefore, ifV is the oriented 3-simplex content of
region V of a graph G, it follows that ^dv̇,V&50
5^v̇,]V&, thereforê v,]V& is constant, which correspond
to one consequence of the Kelvin theorem for inviscid flow

C. Discrete model of elastic medium

From the Navier linearized model for an isotropic, hom
geneous elastic medium

r
]2uW

]t2 5m¹2uW 1~m1l!¹W ~¹W •uW !1 fW , ~95!

whereu is the displacement field,r is the density,l andm

are the Lame´ constants, andfW is a body force density, fol-
lows the lattice representation

rü52@~2m1l!d]1m]d#u1 f . ~96!

Although the continuum model is for a homogeneous iso
pic medium, the discrete model can be made very hetero
neous by choosing heterogeneous boundary conditions.
discrete elastic model can be developed on an arbitrary
angulating graph, such as a fattened percolation cluster.
simplestu50 conditions on the boundary surface repres
an elastic medium inside a cavity with fixed walls, similar
the boundary conditions for the electromagnetic cavities
scribed above.

We consider briefly a comparison between cavity mo
arising from the scalar Helmholtz equation and those aris
from the electromagnetic or from the elastic vector mod
Either the electromagnetic or the elastic problems are so
times modeled by a scalar Helmholtz equation@14#. Taking
zero field at the boundary for each case, the character
equations are

@]2d1#aaEa5v2Ea ~97!

for the electromagnetic,

@~2m1l!d0]11m]2d1#aaua5v2ua ~98!

for the elastodynamic, and

@]1d0#a,afa5v2fa ~99!

for the scalar Helmholtz equation. Ignoring the projecti
onto the cavity interiora, and taking into account the iso
morphism between the scalar fields and the gradientlike v
tor fields, which is discussed in detail in Sec. VIII, it wou
seem that the operators]d andd] of the elastodynamic cas
contribute electromagneticlike and scalar-Helmholtz-l
character to the spectrum. The electromagnetic modes
primarily torsional, while the scalar modes relate simply
the compressional modes of vibration. In the case of a p
colation cluster, or in any case where the boundary effe
dominate, the separation does not hold, since]d andd] do
not remain orthogonal when projected ontoa. Notice that the
physical range of the Lame´ constants is limited by the re
quirements that bothm and 2

3 m1l be non-negative. Thus th
elastodynamic model is essentially bounded away from p
Helmholtz behavior. Introduction of quadrature weights do
not remove this qualitative difference. The discrete latt
.
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formulation i.e., Eqs.~97!–~99!, delineates rather well the
differences among the three types of cavity modes involv
the scalar Helmholtz equation and electromagnetic and lin
elastic models. This difference stems from the different
mixture in each of the operators@]2d1#aa ,@(2m1l)d0]1
1m]2d1#aa ,@]1d0#aa , of the two distinct spectral contribu
tions, one from the equivalent pair]1d0 , d0]1 , and the other
from ]2d1 , accounting also for the boundary condition
These spectral differences correlate with different van Ho
singularities in the case of regular periodic lattices, and m
correlate with different qualitative behavior~e.g., scaling be-
havior! in the case of highly disordered structures such
percolation clusters at the critical threshold.

VII. COMMENT ON NUMERICS

The current formulation should not be considered a
merical method, to be compared, for example, with fin
element methods. Rather, it is a mathematical model of v
tor calculus itself, one in which there is a discrete counterp
for each of the integral theorems and most vector identit
By determination of quadrature weights appropriate to p
ticular lattice types, as illustrated in this section for the t
angular lattice, the formalism can accommodate a fin
difference-like numerical method. It can be adapted for u
with other numerical methods as well.

A practical numerical method requires a recipe for tra
scribing back and forth between discrete and continuous fi
quantities and between difference and differential operat
The main ingredient is a set of weights chosen consiste
in the following sense. If one projects the continuum fie
equations to get a difference system on the lattice and so
the difference system, the result should match the continu
solutions up to terms that vanish with the lattice spaci
One can generate such a correspondence by projecting
averaging over a suitably chosen cell centered on each ve
or lattice site. Consistency fixes the values of the weig
that define two operators for each field type. In this sect
we treat the two-dimensional triangular lattice for whic
there are no 3-fields, and 2-fields take on the role of pseu
scalars.

Let a be the distance between sites on the triangular
tice. An averaging cell at vertexi is a system ofp-simplices,
for p50, 1, or 2 centered ati , equipped with each of the set
of information,S i

(p) , E i
(p) , andX i

(p) , where p pertains to
the simplex type.S i

(p) is the set ofp-simplices associated
with the cell of i . E i

(p)5$eWa
(p)% is a set of basis vectors an

X i
(p) is the set of baricentric coordinates associated with

simplices ofS i
(p) . The choice of these sets is to some exte

arbitrary, since averaging can be affected in different wa
on the same lattice. We make it in such a way as to achi
a site-independent correspondence between lattice and
tinuum operators in the limita→0.

A suitable averaging cell is indicated in Fig. 2~a!. The set
S i

(0) contains only the sitei which is associated with the
zero-dimensional basis vectoreW1

(0)51 and baricentric coor-
dinatesxW i

(0)5xW i . The setS i
(1) contains the six 1-simplices

( i , j ) with i@j , the basisE i
(1) contains six unit vectorseWa

(1)

5„cos(2pa/6),sin(2pa/6)…, a50, . . . ,5 pointing toward
neighboring sites as illustrated, and the setX i

(1) contains the
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six bond-center coordinatesxW ia
(1)5xW i1aeWa

(1)/2. S i
(2) contains

the six 2-simplices built with neighboring sitesj andk cho-
sen to make (i , j ,k) right-hand oriented so the associat
E i

(2) contains six vectors of the formeWa
(2)52(eWa

(1)

3eWa11
(1) )/) andX i

(2) is comprised of the triangle baricente
xW ia

(2)5xW i1a(eWa
(1)1eWa11

(1) )/3. To simplify notation, letv ia rep-
resent the 1-field componentv i j for eWa

(1) along the bond
( i , j ), andb ia represent the 2-field componentb i jk for eWa

(2)

oriented along the normal of (i , j ,k). Notice the averaging
cell is chosen symmetrically around sitei so that, for this
regular lattice example, the sumsEm

(1)5(aeam
(1) and Emn

(2)

5(aeam
(1)ean

(1) of vector components give 0 and 3dmn , respec-
tively @6#. The importance of these isotropy conditions w
become clear presently.

Discrete field quantities are obtained by projecting co
tinuous fields onto the lattice. Letf(xW ) and vW (xW ) be con-
tinuum scalar and polar vector fields, respectively, and
bW (xW )5b(xW ) ẑ be an axial vector field oriented normal to th
surface. Components of the corresponding discrete fields

f i5f~xW i
~0!!•eW1

~0! ,

v ia5vW ~xW ia
~1!!•eWa

~1! , ~100!

b ia5bW ~xW ia
~2!!•eWa

~2! ,

where the first equation reduces tof i5f(xW i). The general
projection procedure isuia5P i

(p)@u#5u(xW i
(p))•eWa

(p) for any
p-field u.

To compare respective products and operators it beco
necessary to transport discrete vector field components
fined naturally on bonds or triangular plaquettes, back to
lattices sites. This is done by averaging. In a limited se
one can view it as comparing the discrete fields with c
tinuous ones, as long as comparison takes place at a la
site. Thus one wants to compare the continuum scalar, po
vector, and axial-vector fieldsf(xW i), vW (xW i), andbW (xW i) evalu-
ated at vertexi with the average values

A i
~0!@f#5f ieWa

~0! ,

A i
~1!@v#5

1

3 (
a

v iaeWa
~1! , ~101!

A i
~2!@b#5

1

6 (
a

b iaeWa
~2! ,

FIG. 2. ~a! Averaging unit cell used for the triangular lattice.~b!
Generic 2-simplex belonging toS i

(2) .
-

t

re

es
e-
e
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of the discrete fields. The numerical factors are lattice dep
dent, the values given being the ones for the triangular
tice. Thus, the first consistency condition is that

u~xW i !5A i
~p!@P i

~p!@u##1O~a!, ~102!

for sufficiently well behaved continuum fieldu(xW ) at each
vertex i .

Vector difference operators divergence, gradient, and
defined in Sec. IV are linear mappingsc:Cp→Cq , while the
scalar, dot, and cross products defined in Sec. V are lin
mappings from the Cartesian productc:Cp3Cq→Cr , for ap-
propriate choices of ranksp, q, andr . The form ofc in each
case is fixed by combinatorics. LetC be the corresponding
map defining a differential operator or product on continuo
fields. Its definition comes from standard vector calcul
Thus for consistency of operators

A i
~q!@c~u!#5ag

1

lc
C„u~xW i !…1O~ag11!, ~103!

whereg is the order of differentiation and the constantlc is
independent of the vertexi and is characteristic of the lattic
and the operator. The discrete fieldu on the left side is pro-
jected pointwiseui5P i

(q)@u# from the continuous fieldu(xW )
on the right. Similarly for products

A i
~r !@c~u1 ,u2!#5

1

lc
C„u1~xW i !,u2~xW i !…1O~a!.

~104!

Consistency criteria Eqs.~102!–~104! determine the pro-
portionality constants for transferring continuum field equ
tions into the discrete formulation.

With the averaging cell the usual operators and produ
encountered in field theory are consistent. Table I lists
correspondences with associated scale factors. The techn
for computing these factors is to Taylor expand and trunc
to the relevant order. For the sake of completeness we de
some of the tabulated results.

Consider the dot products of 1-fields. Valuable simpli
cation results from using the abbreviationeWa for eWa

(1) . It
follows from the definition Eq.~40! that

A i
~0!@v•w#5

1

2 (
a

v iawia

5
1

2 (
a,h,k

vh~xW i1aeWa!wk~xW i1aeWa!eaheak

5
1

2 (
h,k

vh~xW i !wk~xW i !(
a

eaheak1O~a!.

As a consequence of the isotropy conditions, it follow
that

A i
~0!@v•w#5

3

2 (
h

vh~xW i !wh~xW i !1O~a!

5
3

2
vW ~xW i !•wW ~xW i !1O~a!, ~105!
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and therefore the scaling factor equalsl52/3.
The cross product of two 1-fields is a 2-field, the components of which are given by Eq.~44!. By definition @see Fig. 2~b!#

~v3w! ia5
1

6
v ia$wi ,a111wW @xW i1a~eWa1eWa11!/2#•~eWa112eWa!%2

1

6
vW @xW i1a~eWa1eWa11!/2#•~eWa112eWa!@wia1wi ,a11#

1
1

6
v i ,a11$wW @xW i1a~eWa1eWa11!/2#•~eWa112eWa!2wia%5

1

2
~v iawi ,a112v i ,a11wia!1O~a!.

Therefore, by making use of Eq.~101!,

A i
~2!@v3w#5

1

12 (
h,k

vh~xW i !wk~xW i !(
a

~eahea11,k2ea11,heak!1O~a!5
1

12 (
h,k

vh~xW i !wk~xW i !Qhk1O~a!, ~106!

TABLE I. Correspondence between lattice and continuum operators showing appropriate scale factors.

Operator Meaning Continuum quantity Scale factorl

1 v•w scalar product of vectors vW •wW 2/3
2 v3w cross product of vectors vW 3wW 4/)
3 v3b cross product of planar and axial vectors vW 3bW )

4 d0f gradient of a scalar field ¹W f 1

5 2]1v divergence of a vector field ¹W •vW 2/3

6 d1v curl of a vector field ¹W 3vW 4/)

7 ]2b curl of an axial vector ¹W 3bW )

8 2]1d0f Laplacian of a scalar field ¹2f 2/3
9 d0(v•v) gradient of the square modulus ¹uvW u2 2/3

10 v3d1v cross product ofvW and its curl vW 3¹W 3vW 4

11 2d0]1v gradient of the divergence ¹W (¹W •vW ) 2/3

12 ]2d1v curl-curl of a vector field ¹W 3¹W 3vW 4
t

y

ther
the
his

of a
lat-
on
el-

on-
where the tensorQhk53)«hk with «hk the Levi-Civita an-
tisymmetric symbol. Therefore

A i
~2!@v3w#5

)

4
vW ~xW i !3wW ~xW i !1O~a!. ~107!

By analogous calculation for the cross product of a 1-fieldv
and of a 2-fieldb defined by Eq.~51!, one obtains

A i
~1!@v3b#5

1

)
vW ~xW i !3bW ~xW i !1O~a! ~108!

and thus the corresponding scale factorl5).
Now consider the first-order differential operators~lines

4–7 of Table I!. If f is a 0-field, the local average ofd0f on
the unit cell yields

A i
~1!@dof#5

1

3 (
a

@f~xW i1aeWa!2f~xW i !#eWa

5
a

3 (
j

]f~xW !

]xj
U

xW5xW i

(
a

ea jeWa1O~a2!.

~109!
Applying the second isotropy property, it follows tha
A i

(1)@dof#5a¹f(xW i)1O(a2), so the scale factor isl51.
Similarly, for the lattice analog]1 of the divergence applied
to a 1-fieldv one finds from the definition of the boundar
that

A i
~0!@2]1v#5(

a
va

i 5(
a

vW ~xW i1aeWa/2!•eWa

5
a

2 (
jk

]v j~xW !

]xk
U

xW5xW i

3(
a

ea jeak1O~a2!, ~110!

and thereforeA i
(0)@2]1v#5(3a/2)¹•vW (xW i)1O(a2). The

correspondence summarized in Table I between the o
lattice operators and continuum ones is obtained from
same sort of elementary algebra and Taylor expansion. T
correspondence defines quantitatively the lattice analogs
given set of continuum field equations. For example, the
tice analog of the incompressible Navier-Stokes equation
a triangular lattice equipped with the averaging recipe dev
oped in this section, including necessary proportionality c
stants, is given by
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r v̇1
r

3a
d~v•v !2

4r

a
v3dv52

1

a
dp2

4m

a2 ]dv. ~111!

The solution of this equation can thus be compared qua
tatively in the limita→0 with the solution of the continuum
Navier-Stokes equation.

The analysis developed above connecting difference
differential operators for the triangular lattice can be carr
out with some modifications for nonuniform lattices. Th
topic is outside the scope of the current paper and will
discussed elsewhere.

VIII. OPERATORS AND HELMHOLTZ
REPRESENTATION

Some properties of]d5]p11dp andd]5dp21]p pertain
to the Helmholtz representation of a general vector field
the sum of a gradient plus a curl, or to topological propert
of G. Both operators are Hermitian, sincê]du,v&
5^du,dv&5^u,]dv& and ^d]u,v&5^]u,]v&5^u,d]v&. In
fact, the latter equations also show that the eigenvalue
both]d andd] are non-negative, which proves, as promis
in Sec. III, that the eigenvalues of¹2 are nonpositive. Op-
erators]d and d] are orthogonal, meaning that (]d)(d])
5]d2]50 and (d])(]d)5d]2d50, and hence commutea
fortiori . An orthonormal basis of simultaneous eigenvect
of ]d andd] generatesCp . Choosing an arbitrary elementê
of the basis, one sees from orthogonality of the operators
either]dê50 or d]ê50 or both.

The null space, or kernel, of]d has a simple physica
meaning. Observe thatdu50 everywhere if and only if
]du50 everywhere. To see this, consider̂]du,u&
5^du,du&. If the left-hand side is zero, thendu is zero
because its norm is zero. The reasoning in the other direc
is obvious. Note, however, that if]du50 only on some
subspaceV of Cp , one cannot conclude thatdu50 in V.
The relation holds only when]du50 on everyp-simplex of
G. Therefore, the null space of]d is the space ofp-fields
with vanishing coboundary. Forp50, 1, or 2 this means
fields with vanishing gradient, curl, or divergence, resp
tively. Similarly one can seemutatis mutandisthat the null
space ofd] is the space ofp-fields with vanishing boundary
For p51, 2, or 3 this means fields with vanishing dive
gence, curl, or gradient, respectively.

The coboundarydp generates an isomorphism betwe
the spacep-fields with nonvanishing coboundary and th
space of (p11)-fields with nonvanishing boundary. Suppo
]du5lu with lÞ0. Then

~d]!du5d~]d!u5l~du!, ~112!

so thatdu is an eigenvector ofd] with the same eigenvalu
l. If u is normalized, then

^du,du&5^u,]du&5l. ~113!

Thus the corresponding normalized eigenvector ofd] is
du/Al. The same isomorphism can be built in the oth
direction using]p11 .

Quite often for linear problems ink dimensions the solu
tion space separates naturally into at mostk fundamental
ti-
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parts, perhaps coupled by boundary conditions. Each
corresponds to an operator pair]pdp21 , dp21]p for p from 1
to k. In physical terms, fork52 ~or k53) the isomorphisms
developed above imply two~or three! correspondences, on
between scalar potentials and gradient fields~or between
pseudoscalar potential and gradient pseudovector fields! and
one between solenoidal vector and solenoidal pseudove
fields. In the latter case, either one can be the vector pote
for the other. Each of these is really the same sort of co
spondence between the different field representations of
sentially the same aspect of the problem, correspondin
operators with the same spectrum. The correspondence
exact isomorphism betweenp-fields and (p21)-fields rep-
resenting basically the same thing, and eitherd or ] gives a
concrete representation for the isomorphism.

Consider now the remaining subspace ofCp , the p-fields
with zero boundary and zero coboundary, or the overlap
the kernels of]p11dp and dp21]p . These have simple, to
pological meaning. Since]250, it is clear that the image
im ]p11 is a subspace of the null space ker]p . The homol-
ogy groupHp for G with respect to the complex numbers
the quotient ker]p / im ]p11 , or the null space of]p modulo
the image space of]p11 . Thus it represents the set o
p-fields which have zero boundary, but not because they
themselves boundaries of (p11)-fields. For example, sup
poseG is a rhomboidal section of triangular lattice with p
riodic boundary conditions, i.e., the surface of a torus. Th
it is clear that two closed polygonal paths, each traversinG
in one of its two independent periodic directions, belong
H1 . Since the coefficients are complex numbers,Hp is iso-
morphic to the orthogonal complement of im]p11 in
ker ]p . A properly chosen basis forH1 , for example, would
correspond to the independent periods or circuits inG. The
pth Betti numberbp is the dimension ofHp .

If u is not in im ]p11 , then there is nov in Cp11 such that
]p11v5u. Therefore, in view of the isomorphism generat
by dp betweenp-fields with nonzero coboundary and (p
11)-fields with nonzero boundary, it follows that]p11dpu
50 or dpu50, souPker dn . Hence ifu is in ker ]p but not
im ]p11 , then both]pu50 anddpu50. The steps are re
versible, soHp is the space ofp-fields annihilated by both]
andd. Thesep-fields correspond in the continuum formula
tion to the set fields of a given type with constant coefficie
in an infinite, simply connected space with Cartesian coo
nates. But they extend the concept, in a coordinate-free w
to p-fields in the multiply connected case. One could refer
them as constantp-fields. The Betti numberbp is the number
of independent, qualitatively different constantp-fields, or
the dimension of the space ofp-fields with both zero bound-
ary and zero coboundary. Ink52 or 3 dimensions, the
physical meaning of the constant fields is clear. Forp51 or
2, the constant fields represent global circulations aro
handles of the space. Forp50 or 3, they represent indepen
dent stationary states of diffusion, hence the number of
connected parts ofG. However, whereas forp50 connect-
edness is determined byG or H, it is in the case ofp53
determined by!G with corresponding adjacency matrix!H
defined by the actiond2]3 on G.

Collecting results, we find that the general Helmholtz re
resentation of an arbitraryp-field u is
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u5df1]c1c, ~114!

whereu is any element ofCp , and onceu is given,c is a
unique member ofHp , andf andc belonging toCp21 and
Cp11 , respectively, are potential fields. The potentialf is
free to vary bydfPker d and c is free to vary bydc
Pker ], but cPH is fixed. To see this, consider

u5d~f1df!1]~c1dc!1~c1dc!. ~115!

Thus

ddf1]dc1dc50. ~116!

But ddf50 and]dc50 everywhere. Hencedc50 andc
must be unique.

Consider an arbitrary linear operator which is a rath
general function of]d and of d]. Examples appear in th
lattice Helmholtz equation for arbitraryp, the electromag-
netic model, the elastodynamic model and the lattice Nav
Stokes equation in the Stokes limit of low Reynolds num
where the inertial term is neglected, as well as the lin
Timoshenko equation and many other physical mod
When the functionf (]d,d]) can be defined by simultaneou
diagonalization of the two matrices, so that, for examp
f (x,y) is not singular on the lines (x,0) or (0,y) or for any
pair (x,y) of eigenvalues, then due to orthogonality of]d
andd],

f ~]d,d]!5 f ~]d,0!1 f ~0,d]!2 f ~0,0!. ~117!

This is a rather striking simplification sincef (x,y) can be
quite general. For example, by expanding one sees that]d
1d]1K)25(]d1K)21(d]1K)22K2.

As an application, we obtain Green functions for a line
lattice model of the form

Du2 f ~]d,d]!u5F, ~118!

whereD is polynomial in the time derivatived/dt andF is a
general source term. Laplace or Fourier transforming le
one to consider the resolvent or transfer matrix

Gf~z!5@z2 f ~]d,d]!#21, ~119!

defined forz outside the spectrum. Thus

Gf~z!5Ga~z!1Gb~z!2
1

z2 f ~0,0!
, ~120!

where

Ga~z!5@z2 f ~]d,0!#21, ~121!

Gb~z!5@z2 f ~0,d]!#21. ~122!

The latter two expressions are again defined in the usual
by the canonical, diagonal forms of]d andd]. Whenf (x,y)
is a rational function, we have shown@15# how to obtain
them as closed formulas in terms of the fundamental re
vents

G]d~z!5@z2]d#21, ~123!
r

r-
r
r

s.

,

r

s

ay

l-

Gd]~z!5@z2d]#21. ~124!

Moreover, since (d])n5d(]d)n21], one has

Gdp21]p
5

1

z
1

1

z2 dp21G]pdp21
~z!]p . ~125!

The latter equation applies the isomorphism generated
dp21 or ]p to transfer from one equivalent space to anoth
Green functions for boundary value problems pertaining
the original equation are matrix entries ofGf(z). The bound-
ary conditions that we have not addressed so far can be
cluded by adding terms to correctGf(z) at the boundary of
the region of interest@16,12#.

Thus the solution to boundary value problems involving
rather broad class of linear operators can be solved u
three or fewer families of fundamental Green functions, ea
corresponding to either of the two operatorsG]d(z) or
Gd](z). These in turn can be computed once and for all fo
given type of lattice, on in general for a given triangulatin
graphG. Boundary conditions can be modified by makin
local modifications, and even in the case of nonlinear mod
the Green functions are useful for developing a system
perturbation theory.

IX. SUMMARY

We have shown that with the proper choice of definiti
of the dot, cross, and scalar multiplication between pairs
p-fields for different combinations ofp, it is possible to
make a discrete vector calculus, with] and d acting as di-
vergence, gradient, and curl, which has all the integral th
rems and most of the vector identities of the vector differe
tial calculus. Generalized Stokes theorems satisfied
p-fields for eachp are derived in Sec. III from the duality
between] and d. Interpretations of the boundary]V of a
region V of G and coboundaryd!V of !V are discussed
there in some detail. The correspondence deduced from t
integral theorems between the vector operators and
boundary and coboundary is summarized in Fig. 1. A se
vector identities in the difference formulation is obtained
Sec. V, together with the explicit formulas in terms of com
ponents.

It is possible using this difference calculus to constru
systems of difference equations or differential differen
equations on a rather general lattice which is forced to h
many of the qualitative behaviors of the analogous system
PDEs. Certain behaviors of the continuous and the co
sponding discrete models, whether linear or nonlinear,
locked together topologically by the analogy in formal stru
ture, i.e., they must satisfy analogous conservation laws
actly. In principle one can analyze these models, forma
and numerically, on structures of arbitrary complexity. It
possible to derive theoretical results without reference to
dividual field components or the explicit structure ofG.

Where the vector difference formalism comes into play
in the process of manipulating and solving the discr
model. It provides a discrete counterpart to each vector
culus operation, and hence to every conserved quantity
first integral, e.g., the No¨therian invariants, and every solu
tion strategy of the continuum model. These are exact,
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approximations that hold in the continuum limit. Hence w
have seen discrete analogs to the Poynting vector and
electromagnetic energy density in the case of the lat
Maxwell equations, which satisfy exactly a discrete analog
the Poynting theorem. For fluids we have seen a special
of the Kelvin circulation theorem. Similar integral relation
hold for other kinds of models. We consider this, rather t
numerical efficiency, to be the point of the difference calc
lus. Existence of analogs to the conservation laws, etc., le
one to expect that the behavior of the discrete models
often be qualitatively similar to that of the continuous on

To show that the formalism can in fact be adapted t
numerical method, we have derived the scale factors
weights necessary to get quantitative correspondence
tween PDEs for continuous fields in two dimensions an
set of difference equations on a triangular lattice. This illu
trates one of many possible numerical methods compa
with the difference calculus.

We have shown thatp-fields for eachp partition naturally
into three classes related to the spectra of]d andd], which
share eigenvectors. These operators correspond to cur
gradient divergence in different ways, depending onp. The
l

s

-

i-
he
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se

t
-
ds
ill
.
a
or
e-
a
-
le

nd

mutual eigenbasis partitions into sets, corresponding to
differentp-field classes. The first is the set annihilated byd]
but not by]d, the second is the set annihilated by]d but not
d], and the third is annihilated by both. This corresponds
a Helmholtz representationu5df1]c1c, as discussed in
Sec. VIII, where the terms in the expansion of generalp-field
u each belong to one of the three classes. Thus Green f
tions for very general linear models can be found from
basic lattice Green functions discussed in Sec. VIII, a
these in turn can be found once and for all for a givenG.
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